fractal - определение. Что такое fractal
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое fractal - определение

MATHEMATICAL SET OF NON-INTEGRAL DIMENSION
Fractals; Fractal geometry; Fractal set; Fractal domain; Fractogeometry; Fractal mathematics; Factral; Fractal theory; Fractal math; Fractal tree; Fractles; Fractels; Fractal sets; Fractal Trees; Applications of fractals; Fractal island; History of fractals; Simulated fractals
  • 3D computer generated fractal
  • 200x200px
  • Cantor (ternary) set.
  • 202x202px
  • A fractal “tree” to eleven iterations
  • 200x200px
  • 200x200px
  • 201x201px
  • 200x200px
  • similar]] to a proper part of itself, but hardly a fractal.
  • 200x200px
  • Mandelbrot set with 12 encirclements.
  • 200x200px
  • [[Sierpinski carpet]] (to level 6), a fractal with a [[topological dimension]] of 1 and a [[Hausdorff dimension]] of 1.893
  • 200x200px
  • 200x200px
  • 208x208px
Найдено результатов: 73
fractal         
<mathematics, graphics> A fractal is a rough or fragmented geometric shape that can be subdivided in parts, each of which is (at least approximately) a smaller copy of the whole. Fractals are generally self-similar (bits look like the whole) and independent of scale (they look similar, no matter how close you zoom in). Many mathematical structures are fractals; e.g. {Sierpinski triangle}, Koch snowflake, Peano curve, Mandelbrot set and Lorenz attractor. Fractals also describe many real-world objects that do not have simple geometric shapes, such as clouds, mountains, turbulence, and coastlines. Benoit Mandelbrot, the discoverer of the Mandelbrot set, coined the term "fractal" in 1975 from the Latin fractus or "to break". He defines a fractal as a set for which the Hausdorff Besicovich dimension strictly exceeds the topological dimension. However, he is not satisfied with this definition as it excludes sets one would consider fractals. {sci.fractals FAQ (ftp://src.doc.ic.ac.uk/usenet/usenet-by-group/sci.fractals/)}. See also fractal compression, fractal dimension, {Iterated Function System}. Usenet newsgroups: news:sci.fractals, news:alt.binaries.pictures.fractals, news:comp.graphics. ["The Fractal Geometry of Nature", Benoit Mandelbrot]. [Are there non-self-similar fractals?] (1997-07-02)
fractal         
(fractals)
In geometry, a fractal is a shape made up of parts that are the same shape as itself and are of smaller and smaller sizes.
N-COUNT: oft N n
Fractal         
In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set.
Fractal (disambiguation)         
WIKIMEDIA DISAMBIGUATION PAGE
A fractal is a mathematical set that has a fractal dimension that usually exceeds its topological dimension and may fall between the integers. There is also a fractal derivative, defined in fractal spacetime.
Fractal-generating software         
  • Chaotica]]
  • A similar plot to the very first render by [[Benoit Mandelbrot]]
  • Various trees rendered with an [[L-system]]
  • Simple [[Koch curve]]s display strict [[self-similarity]]
  • Fractal zoom animation on a [[Julia set]]
  • Palette editor in [[Fractint]]
  • Example for an open source program: mandelbulber
  • Simulated landscape]] using multiple programs
  • Fractal created using [[GIMP]]
Fractal Generating Software; Fractal generating software
Fractal-generating software is any type of graphics software that generates images of fractals. There are many fractal generating programs available, both free and commercial.
Fractal cosmology         
A SET OF MINORITY COSMOLOGICAL THEORIES ABOUT THE DISTRIBUTION OF MATTER IN THE UNIVERSE.
Fractal Cosmology; Fractal universe
In physical cosmology, fractal cosmology is a set of minority cosmological theories which state that the distribution of matter in the Universe, or the structure of the universe itself, is a fractal across a wide range of scales (see also: multifractal system). More generally, it relates to the usage or appearance of fractals in the study of the universe and matter.
Fractal curve         
  • Construction of the [[Gosper curve]]
FRACTAL IN THE FORM OF A MATHEMATICAL CURVE
Fractal Curves; Fractal curves; Fractal Curve; Fractal function; Fractal Function; Fractal Functions; Fractal functions; Fractal image; Fractal Image
A fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal. In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length.
Fractal art         
  • Fractal art exhibition, 2013
  • A detail from a non-integer [[Multibrot set]]
  • Selimiye Mosque]] in [[Edirne]], Turkey, with [[self-similar]] patterns.
FORM OF ALGORITHMIC ART
Fractal animation; Fractal Art
Fractal art is a form of algorithmic art created by calculating fractal objects and representing the calculation results as still digital images, animations, and media. Fractal art developed from the mid-1980s onwards.
fractal dimension         
  • ''Figure 7:'' Illustration of increasing surface fractality. Self-affine surfaces (left) and corresponding surface profiles (right) showing increasing fractal dimension ''D<sub>f</sub>''
MATHEMATICAL QUANTITY
Fractal dimensions; Fractal Dimension
<mathematics> A common type of fractal dimension is the Hausdorff-Besicovich Dimension, but there are several different ways of computing fractal dimension. Fractal dimension can be calculated by taking the limit of the quotient of the log change in object size and the log change in measurement scale, as the measurement scale approaches zero. The differences come in what is exactly meant by "object size" and what is meant by "measurement scale" and how to get an average number out of many different parts of a geometrical object. Fractal dimensions quantify the static *geometry* of an object. For example, consider a straight line. Now blow up the line by a factor of two. The line is now twice as long as before. Log 2 / Log 2 = 1, corresponding to dimension 1. Consider a square. Now blow up the square by a factor of two. The square is now 4 times as large as before (i.e. 4 original squares can be placed on the original square). Log 4 / log 2 = 2, corresponding to dimension 2 for the square. Consider a snowflake curve formed by repeatedly replacing ___ with _/\_, where each of the 4 new lines is 1/3 the length of the old line. Blowing up the snowflake curve by a factor of 3 results in a snowflake curve 4 times as large (one of the old snowflake curves can be placed on each of the 4 segments _/\_). Log 4 / log 3 = 1.261... Since the dimension 1.261 is larger than the dimension 1 of the lines making up the curve, the snowflake curve is a fractal. [sci.fractals FAQ].
fractal compression         
METHOD OF DIGITAL IMAGE COMPRESSION
Fractal image compression; FiF file format; .fif; Fractal Compression; Fractal image encoding; Fractal interpolation; Fiasco (image format)
<algorithm> A technique for encoding images using fractals. {Yuval Fisher's fractal image compression site (http://inls.ucsd.edu/y/Fractals/)}. [Summary?] (1998-03-27)

Википедия

Fractal

In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illustrated in successive magnifications of the Mandelbrot set. This exhibition of similar patterns at increasingly smaller scales is called self-similarity, also known as expanding symmetry or unfolding symmetry; if this replication is exactly the same at every scale, as in the Menger sponge, the shape is called affine self-similar. Fractal geometry lies within the mathematical branch of measure theory.

One way that fractals are different from finite geometric figures is how they scale. Doubling the edge lengths of a filled polygon multiplies its area by four, which is two (the ratio of the new to the old side length) raised to the power of two (the conventional dimension of the filled polygon). Likewise, if the radius of a filled sphere is doubled, its volume scales by eight, which is two (the ratio of the new to the old radius) to the power of three (the conventional dimension of the filled sphere). However, if a fractal's one-dimensional lengths are all doubled, the spatial content of the fractal scales by a power that is not necessarily an integer and is in general greater than its conventional dimension. This power is called the fractal dimension of the geometric object, to distinguish it from the conventional dimension (which is formally called the topological dimension).

Analytically, many fractals are nowhere differentiable. An infinite fractal curve can be conceived of as winding through space differently from an ordinary line – although it is still topologically 1-dimensional, its fractal dimension indicates that it locally fills space more efficiently than an ordinary line.

Starting in the 17th century with notions of recursion, fractals have moved through increasingly rigorous mathematical treatment to the study of continuous but not differentiable functions in the 19th century by the seminal work of Bernard Bolzano, Bernhard Riemann, and Karl Weierstrass, and on to the coining of the word fractal in the 20th century with a subsequent burgeoning of interest in fractals and computer-based modelling in the 20th century.

There is some disagreement among mathematicians about how the concept of a fractal should be formally defined. Mandelbrot himself summarized it as "beautiful, damn hard, increasingly useful. That's fractals." More formally, in 1982 Mandelbrot defined fractal as follows: "A fractal is by definition a set for which the Hausdorff–Besicovitch dimension strictly exceeds the topological dimension." Later, seeing this as too restrictive, he simplified and expanded the definition to this: "A fractal is a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole." Still later, Mandelbrot proposed "to use fractal without a pedantic definition, to use fractal dimension as a generic term applicable to all the variants".

The consensus among mathematicians is that theoretical fractals are infinitely self-similar iterated and detailed mathematical constructs, of which many examples have been formulated and studied. Fractals are not limited to geometric patterns, but can also describe processes in time. Fractal patterns with various degrees of self-similarity have been rendered or studied in visual, physical, and aural media and found in nature, technology, art, architecture and law. Fractals are of particular relevance in the field of chaos theory because they show up in the geometric depictions of most chaotic processes (typically either as attractors or as boundaries between basins of attraction).